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Temperature dependence of elastic constants of thin cold-rolled stainless steel has been

measured by using the acoustic resonance method. ldentification of the vibration mode has
been examined numerically and experimentally. The elastic constants at room temperature
have also been measured by the pulse echo method. In addition, the texture effect on the
elastic constants has been analysed by assuming the specimen has orthorhombic structure.
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1. Introduction

Stainless steel has good corrosion resistance and
mechantcal properties at high temperature. The tem-
perature dependences of elastic constants of the struc-
tural stainless steels are seldom found in the literatures
[1-5] because those data are dependent on the pro-
cessing variables such as composition or heat treat-
ment. In this study, the temperature dependences of
elastic constants of eight thin cold-rolled stainless
steels were measured by the acoustic resonance
method {6]. The range of Poisson’s ratios at room
temperature was found to be 0.16—0.45. Even though
Poisson’s ratio is very sensitive to the minor change of
Young’s modulus and shear modulus, the range of
Poisson’s ratio was considered too large. The pulse-
echo method was employed for verification. The Pois-
son’s ratio determined by the pulse-echo method was
in the range 0.28-0.30, as expected [7]. Identification
of the vibration mode and examination of the elastic
anisotropic effect on the elastic constants were studied
to determine the reasons.

2. Acoustic resonance method

2.1. Specimens

Eight cold-rolled stainless steels have been used for
the measurements of the temperature dependence of
elastic constants by the acoustic resonance method.
The density and size of the specimens are shown in
Table I.

2.2. Experiments and results

The dynamic elastic modulus of the specimens was
measured using the resonance method [6] where the
specimen was suspended by two carbon yarns as
shown in Fig. 1. As the threads were attached to
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opposite sides of the specimen, both flexural and
torsional resonant frequencies were obtained. The
vibration was excited by a tweeter-type speaker that
was connected to an HP 3324A synthesized function
generator and detected by the phonograph cartridge.
An SR-530 lock-in amplifier was used to amplify the
weak pick-up signal. The resonant frequency at which
the vibration amplitude showed a peak was deter-
mined by varying the frequencies. The experiment was
carried out in vacuum. The shear modulus was then
calculated according to the fundamental torsional res-
onant frequency using Equation 1 [6].

G = 4pRL*f3 (1

where p is density, L is the length of the specimen, fg is
the torsional resonant frequency. R is a shape factor
determined by the specimen geometry which can be
found elsewhere [6]. The Young’s modulus is cal-
culated according to the fundamental flexural reson-

ant frequency using Equation 2 [6].

2 2
E = 094642 (Ltfﬁ> pT 2)

TABLE I Geometry and density of the specimens

Material Density Thickness  Width Length
(gem™?) (mm) {mm) (mm)
STS304 7.899 1.195 14.96 70.05
STS304J1 7.897 0.784 14.95 70.04
STS304L 7.906 1.444 14.92 70.03
STS316 7.953 1.936 1493 70.04
STS316L 7.955 0.751 14.94 70.03
STS410L 7.740 1.140 14.69 68.98
STS420J2  7.689 0.781 14.96 70.02
STS430 7.700 0.753 14.96 70.02
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Figure 1 Geometry and density of the specimens.

where t is specimen thickness and T is the shape factor
determined by the specimen geometry and the Pois-
son’s ratio. The Poisson’s ratio, o, is obtained from the
calculated Young’s modulus and the shear modulus
using the formula o = E/2G — 1. The temperature de-
pendence of elastic constants has been measured by
putting the specimen inside the furnace. The elastic
constants at high temperature are calculated from
Equations 3 and 4

GT) _ [f(M]_ 1 5
G(T)) fa(To) | 1+ aAT
ET) [/ 1 "
E(Ty) a Je(To) | 1+ aAT

where f g(T') is resonant frequency at high temper-
ature, and fg g(Ty), G(Ty), E(T,) are resonant fre-
quency, shear modulus, Young’s modulus at room
temperature, respectively. o is thermal expansion coef-
ficient, and AT is the temperature change.

The experimental results of elastic constants at
room temperature are shown in Table II. 300 series
stainless steels have the shear modulus of 72-76 GPa
and a Young’s modulus of 188-213 GPa. In 400 series
stainless steels, the values of shear modulus are in the

range of 84—89 GPa and the values of Young's
modulus are in the range of 206-224 GPa. Poisson’s
ratios are in the range of 0.16-0.45. The range of the
Poisson’s ratios is considered very large even though
the Poisson’s ratio is very sensitive to the minor
change of Young’s modulus and shear modulus.
Figs 2 and 3 show the temperature dependence of
Young’s modulus and shear modulus, respectively,
up to 900K. In the calculation, the value of
1.77x 1073 K~ ! was used as the thermal expansion
coefficient for 300 series stainless steels and the value
of 1.10x 107°> K~! was used for 400 series stainless
steels. The temperature dependence of elastic con-
stants was fitted with a linear form (a-bT ) and a quad-
ratic form (a-bT 2). Table III shows the values of the
coefficients of determination when the temperature-
dependent elastic constants were fitted with the above
two forms. The results show that the elastic constants
of 300 series stainless steels decrease linearly but those
of 400 series stainless steels generally decrease in
quadratic form as a function of temperature.

2.3. Numerical analysis

Equations 1 and 2, which calculate the elastic con-
stants from the resonant frequencies, have been exam-
ined by numerical analysis. The resonant frequencies
are calculated by the finite element method (FEM)
using the Young’s modulus and shear modulus ob-
tained by the measured flexural resonant frequency
and torsional resonance frequency as shown in Fig. 4.
The general purpose FEM package ABAQUS has
been used. In this figure, | means fundamental mode
and 2 means the first overtone of the fundamental
mode. The resonant data of 316L stainless steel were
used in this calculation. The resonant values from
numerical calculation do not show significant differ-
ence from the values from the resonant experiment. It
means that the formulae are valid to the calculation of
elastic constants from the resonant frequencies. How-
ever, there is a possibility of measuring the first over-
tone of flexural vibration instead of the fundamental
torsional resonant frequency when they are close to
each other.

TABLE Il Shear modulus, Young’s modulus, and Poisson’s ratio of the specimens

Type Ultrasonic method Resonance method
G(GPa) E(GPa) G G(GPa) E(GPa) I3

304 77.2 200 0.295 75.5 208 0.381

3047, 77.4 200 0.295 72.0 209 0.451

304L 77.3 200 0.294 74.3 205 0.381

316 76.5 198 0.294 76.1 213 0.398

316L 75.0 195 0.300 74.0 188 0.270

410L 82.9 213 0.286 84.3 224 0.329
420J, 82.8 215 0.300 88.2 215 0.220

430 85.0 219 0.289 88.7 206 0.161

300 series® 75-77 195-200 0.294-0.300 72 76 188-213 0.270 0.451
400 series® 83 85 213 219 0.286--0.300 84 89 206-224 0.161-0.329

 Distribution of elastic constants of the above 300 series stainless steels.
Y Distribution of elastic constants of the above 400 series stainless steels.
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Figure 2 Temperature dependence of Young's modulus. (O) 430,
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Figure 3 Temperature dependence of shear modulus. (@) 430, ()
316L, (@) 4201,, (J) 304),, (A) 410L, (<) 304, (O) 304L, (V) 316.

2.4. |dentification of fundamental mode
of torsional vibration

When a specimen vibrates in resonance, the type of
vibration may be determined by probing. That is, the
pick up is held slightly against different parts of the
specimen while it is vibrating in resonance. If none of
the settings of the equipment is altered during the
course of probing, then the amplitude of the resonance
peak is proportional to the mechanical vibrations of
the portion of the specimen against which the probe is
held. Fig. 5a shows the experimentally obtained pro-
bing amplitude at fundamental torsional resonant fre-
quency in the 316L stainless steel, and (b) shows the
vibration modes by ABAQUS in the specimen. There
are nodes at the centre-lines and there are maximum
amplitudes at the corners of the specimen in both (a)
and (b). Therefore, the fundamental torsional vibra-
tion are measured correctly without confusion with
the first overtone of the flexural vibration.

TABLE 111 The values of the coefficients of determination when
the temperature-dependent elastic constants are fitted with linear
form and quadratic form

G E

a-bT a-bT? a-hbT a-bT?
304 0.9840 0.9328 0.9852 0.9336
3047, 0.9965 0.9634 0.9897 0.9469
304L 0.9943 0.9555 0.9942 0.9555
316 0.9910 0.9479 0.9944 0.9573
316L 0.9868 0.9390 0.9941 0.9584
410L (.9901 0.9938 0.9887 0.9938
420], 0.9919 0.9893 0.9805 0.9968
430 0.9861 0.9974 0.9882 0.9975

Resonance data
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Figure 4 Resonant frequency examined by ABAQUS.

3. Pulse-echo method

A Pulser/Receiver (Panametrics, Model 5601A/TT)
has been used for the generation and detection of
ultrasonic waves. A digital oscilloscope (LeCroy,
Model 9310) has been used for the measurement of
time delay. The specimens were the same as those for
the acoustic resonance method. The measurement di-
rection was the through-thickness direction. The 20
and 10 MHz transducers were used for longitudinal
and shear-wave velocity measurements, respectively.
The polystyrene buffer rod was employed to overcome
the overlapping of the main bang and the back echo
signals. The shear modulus and the Young’s modulus
were calculated according to Equations 5a and b [8].

G = pV¢ (5a)
L, 37 —4v¢
E = pVi vEv2 (5b)
where V is the shear-wave velocity and V| is the
longitudinal wave velocity.

Significant anisotropy of shear-wave velocities was
observed in the measurement of shear-wave velocities
as shown in Table IV. The average value of fast and
slow shear-wave velocities was used to calculate the
elastic constants. The results are shown in Table II.
The shear modulus and Young’s modulus by the
pulse-echo method are slightly different from those
values from the resonant method. But the range of the
Poisson’s ratio by the pulse echo method is narrow
compared with that by the resonant method. The
Poisson’s ratios determined by the pulse-echo method
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Figure 5 Torsional vibrational mode shape by (a) experimental
measurements and (b) ABAQUS.

TABLE IV Two shear-wave velocities observed in the specimens

Specimen Fast velocity Slow velocity
(kms™ " (kms™1)
304 3.148 3.140
3047, 3.144 3.131
304L 3.166 3.098
316 3.290 2917
316L 3.291 2.848
410L 3.352 3.206
4207, 3.363 3211
430 3.429 3.287

are in the range 0.28-0.3. However, the Poisson’s
ratios determined by the resonant method are in the
range 0.16-0.45. It appears that averaging the two
shear-wave velocities for the calculation of the elastic
constants produces legitimate values of the Poisson’s
ratios.

4. Analysis of texture effect

It is assumed that the thin cold-rolled stainless steel
has macroscopic orthorhombic symmetry [9, 10]. Let
0-xyz be the sample coordinate system with x, y, and
z axes as the rolling, transverse, and normal directions.
Following the Voigt procedure for averaging elastic
constants of a polycrystal having a preferred orienta-
tion of the grains, Sayers [10] found that the nine
polycrystalline elastic constants, C;;, of an orthorhom-
bic plate for the cubic crystallite might be expressed in
terms of only six independent constants, W0, Waa0,
and W, (crystallite orientation distribution function,
CODF coefficients [11-13]), and the single-crystal
elastic constants, C¢, CY, and CJ,. The equations are
written again in Equation 6a—i for completeness.

1 6
C,, =C% —2C° [g —g\/zn2
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2 1
X <W400 —5\/10W420 +§\/70W440>:| (6a)

1 6
Cy, =CP, —2C°| = — — /2n?
22 11 [5 35\/“

2 1
X <W400 + g\/IOWmo + 3\/7OM4()>:| (6b)

1 16
Cy3=CY, —2C° (§—3—5"\/2752 W4oo> (6¢)
1 16 , 5
Cas=Ciu +C° |:5 - gg\/zﬁz <W4oo + \/5 W420>j|
(6d)
1 16 5
Css=Cia+ C° [g - g\/zﬂz <W4oo - \/5 W4zo>:|
(6¢)
1 4
Coo=Cy + C° [g + g\/2n2 <W400 + \/7OW440>]
(6f)
) 1 16 5
Cy =Ci,+C° |:§ - ;5\/2712 <W4oo - \/E W420>:|
(6g)
1 4
Cio=C+C° |:§ +§§\/2sz <VV400 "\/70 W44o>]
(6h)
1 16 5
Cys = Ciy + 60[3 — V2 <W4oo + \/5 W4zo>]
(61)

where C° = C), — C?, —2CY,.

Kawashima [14, 15] gave the equations for the
CODF coefficient Wyg0, Waao, and Wy, from the
relative ultrasonic velocity measurement using the
Voigt approximation as shown in Equations 7a—c.

7 <5€24 + CO>
16,/2n> c°
5CY; +10C8,
1 — (o K 7
X[ <2C° +10¢g, ) (72)
—7 <5C24 + C°>
16/2n° c®

5CY; + 10C3,
2C° +10CY, "

Waoo

W420

(7b)

7 <5C24 + C°

8./35n2

y (1 _ Ki> (70)

4\/2n2W400>

Cc’ * 7



TABLE V The comparison of isotropic and anisotropic analysis by the resonant frequencies

Experimental  Isotropic Anisotropic
(Hz)
E,G ABAQUS Resonant frequencies Cy; ABAQUS  Resonant frequencics
- (Hz) - (Hz)
Flexural 765 781 787
Torsional 2172 2199 2174

Here, the details of K, K,,, and K; can be obtained
from Kawashima [14]. Following Kawashima [14,
15], Waoo and W,,o were obtained from the ratio of
the resonance frequencies of slow shear waves, fast
shear waves and longitudinal waves measured by the
thickness resonance method. W, ,, was obtained from
measurements of the velocities of the fundamental
horizontally polarized shear mode (SH,) propagated
at 0° and 45° from the rolling direction in the plane of
the plate.

316L stainless steel has been used for the analysis of
texture effect because the specimen has the maximum
anisotropy. The specimen is the square type plate of
200 mm X 200 mm x 0.751 mm. To measure the reson-
ance frequencies of the through-thickness modes, an
EMAT [14] was made using a spiral coil of 30 mm
diameter and a disc-type Nd-Fe-B permanent magnet
of 20 mm diameter. This EMAT generates and re-
ceives the longitudinal and shear waves simulta-
neously. The measurement was performed with
a superheterodyne phase scnsitive detector system
(RAM 10000, Ritec, Inc.) [16]. The measured resonant
frequencies were ranged in 0.5-5 MHz. The burst
width for exciting the transmitter and the integrator
gate width were 40 and 100 ps, respectively. The de-
tailed principles of resonant frequency measurement
are described elsewhere [14—-16]. A different kind of
EMAT [16] was also made to measure the transit time
of the horizontally polarized shear wave (SH wave)
propagated along the tangential direction of the plate
surface. This EMAT consists of 48 magnets of
2.4 x 5 mm? and an elongated spiral coil. It was excit-
ed by the tone burst pulse of 660 kHz. The distance
between the transmitter and receiver was about
120 mm. From the above measurement, three CODF
coefficients were obtained, Wy =4.39x 1073,
Wio= —576x 1073, and Wy,o= —846x107%
For the calculation of those coefficients, the single-
crystal elastic constants of 316 stainless steel
(CY, =206 GPa, C9,=133GPa, Cj,=119GPa
[18]) were used because the single-crystal elastic con-
stants of 316L stainless steel were not available in the
literature. The present ultrasonic method is affected by
the chosen values of the single-crystal elastic constants
used in the calculation. Therefore, directly measurable
elastic constants from the above experiment, such as
Ci3, Caq, Css, Coe were taken instead of the cal-
culated elastic constants from CODF coefficients and
the single-crystal elastic constants. The following
nine elastic constants were obtained from the above
analysis.

C,, =261 GPa C,, =280GPa (s, =263GPa

Cio=63GPa Css=82GPa
C,, =83GPa C,, = 104 GPa

Cseo = 85 GPa
C12 = 99 GPa

Table V shows the comparison of isotropic and an-
isotropic analysis by the resonant frequencies. Iso-
tropic analysis means that the resonant frequencies
are numerically calculated from two elastic constants
which were obtained {rom the pulse-echo method.
Anisotropic analysis means that the resonant frequen-
cies are numerically calculated from the above nine
elastic constants. From the anisotropic analysis, the
calculated torsional resonant frequency is very close
to the experimental value because the relevant elastic
constants for the calculation of torsional vibration are
directly measured ultrasonic data. The discrepancy
still exists in the flexural resonant frequency because
of the inaccurate single-crystal elastic constants.

5. Conclusion

From the acoustic resonance method, the austenitic
stainless steels (300 series) are shown to have
a Young’s modulus of 188-213 GPa and a shear
modulus of 72-76 GPa at room temperature. Ferritic
and martensitic stainless steels (400 series) have
a Young’s modulus of 206-224 GPa and a shear
modulus of 84—-89 GPa. The temperature dependence
of elastic constants of 300 series stainless steel de-
creases linearly, but that of 400 series stainless steel
decreases in quadratic form. Finally, the reason for the
large range of Poisson’s ratio determined by the
acoustic resonance method is shown to be due to the
anisotropy of the materials.
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